免费发布供求信息
热门搜: 无锡  赣州  南京  工业  阳电  作用  区别  消毒柜  纽曼  散热器  新能源  插槽 
当前位置: 首页 » 投稿 » 美文摘要 » 正文

以太网是什么意思(什么是以太网为什么要叫做“以太”网)

放大字体  缩小字体 发布日期:2025-01-25 07:38:41  作者:[db:新闻资讯作者]  浏览次数:22
核心提示:本文目录什么是以太网为什么要叫做“以太”网以太网是什么意思啊“以太网“是什么意思以太网是什么意思“以太网”是什么意思呢以

本文目录

  • 什么是以太网为什么要叫做“以太”网
  • 以太网是什么意思啊
  • “以太网“是什么意思
  • 以太网是什么意思
  • “以太网”是什么意思呢
  • 以太网是什么啊
  • 以太网是什么

什么是以太网为什么要叫做“以太”网

以太网简介:

以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域网规范,是当今现有局域网采用的最通用的通信协议标准。以太网络使用CSMA/CD(载波监听多路访问及冲突检测)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802.3系列标准相类似。包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网。它们都符合IEEE802.3。

标准:

IEEE802.3规定了包括物理层的连线、电信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术,它很大程度上取代了其他局域网标准。如令牌环、FDDI和ARCNET。历经100M以太网在上世纪末的飞速发展后,千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。

常见的802.3应用为:

10M: 10base-T (铜线UTP模式),

100M: 100base-TX (铜线UTP模式),

100base-FX(光纤线),

1000M: 1000base-T(铜线UTP模式)

以太网具有的一般特征概述如下:共享媒体:所有网络设备依次使用同一通信媒体。 广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。 CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多节点同时发送。 MAC 地址:媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。这种地址全球唯一。 

Ethernet 基本网络组成:共享媒体和电缆:10baseT(双绞线),10base-2(同轴细缆),10base-5(同轴粗缆)。 转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。 网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。 交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。 以太网协议:IEEE 802.3标准中提供了以太帧结构。当前以太网支持光纤和双绞线媒体支持下的四种传输速率:10 Mbps – 10base-T Ethernet(802.3) 100 Mbps – Fast Ethernet(802.3u) 1000 Mbps – Gigabit Ethernet(802.3z)) 10 Gigabit Ethernet – IEEE 802.3ae

历史

以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。人们通常认为以太网发明于1973年,当年罗伯特·梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。1977年底,梅特卡夫和他的合作者获得了“具有冲突检测的多点数据通信系统”的专利。多点传输系统被称为CSMA/CD(带冲突检测的载波侦听多路访问),从此标志以太网的诞生。

1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。3com对迪吉多,英特尔,和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日出台,当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。

以太网插头:

梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院 MAC项目(Project MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。

该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。

标准以太网:

开始以太网只有10Mbps的吞吐量,使用的是带有冲突检测的载波侦听多路访问(CSMA/CD,Carrier Sense Multiple Access/Collision Detection)的访问控制方法。这种早期的10Mbps以太网称之为标准以太网,以太网可以使用粗同轴电缆、细同轴电缆、非屏蔽双绞线、屏蔽双绞线和光纤等多种传输介质进行连接。并且在IEEE 802.3标准中,为不同的传输介质制定了不同的物理层标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),base表示“基带”的意思,Broad代表“宽带”。

·10base-5 使用直径为0.4英寸、阻抗为50Ω粗同轴电缆,也称粗缆以太网,最大网段长度为500m。基带传输方法,拓扑结构为总线型。10base-5组网主要硬件设备有:粗同轴电缆、带有AUI插口的以太网卡、中继器、收发器、收发器电缆、终结器等。

·10base-2 使用直径为0.2英寸、阻抗为50Ω细同轴电缆,也称细缆以太网,最大网段长度为185m,基带传输方法,拓扑结构为总线型;10base-2组网主要硬件设备有:细同轴电缆、带有BNC插口的以太网卡、中继器、T型连接器、终结器等。

·10base-T 使用双绞线电缆,最大网段长度为100m。拓扑结构为星型;10base-T组网主要硬件设备有:3类或5类非屏蔽双绞线、带有RJ-45插口的以太网卡、集线器、交换机、RJ-45插头等。

· 1base-5 使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;

·10Broad-36 使用同轴电缆(RG-59/U CATV),网络的最大跨度为3600m,网段长度最大为1800m,是一种宽带传输方式;

·10base-F 使用光纤传输介质,传输速率为10Mbps

1.以太网和IEEE802.3的工作原理在基于广播的以太网中,所有的工作站都可以收到发送到网上的信息帧。每个工作站都要确认该信息帧是不是发送给自己的,一旦确认是发给自己的,就将它发送到高一层的协议层。在采用CSMA/CD传输介质访问的以太网中,任何一个CSMA/CDLAN工作站在任何一时刻都可以访问网络。发送数据前,工作站要侦听网络是否堵塞,只有检测到网络空闲时,工作站才能发送数据。在基于竞争的以太网中,只要网络空闲,任一工作站均可发送数据。当两个工作站发现网络空闲而同时发出数据时,就发生冲突。这时,两个传送操作都遭到破坏,工作站必须在一定时间后重发,何时重发由延时算法决定。2.以太网和IEEE802.3服务的差别尽管以太网与IEEE802.3标准有很多相似之处,但也存在一定的差别。以太网提供的服务对应于OSI参考模型的第一层和第二层,而IEEE802.3提供的服务对应于OSI参考模型的第一层和第二层的信道访问部分(即第二层的一部分)。IEEE802.3没有定义逻辑链路控制协议,但定义了几个不同物理层,而以太网只定义了一个。IEEE802.3的每个物理层协议都可以从三方面说明其特征,这三方面分别是LAN的速度、信号传输方式和物理介质类型。

以太网是在 20 世纪 70 年代研制开发的一种基带局域网技术,使用同轴电缆作为网络媒体,采用载波多路访问和冲突检测( CSMA/CD )机制,数据传输速率达到10MBPS 。但是如今以太网更多的被用来指各种采用 CSMA/CD 技术的局域网。以太网的帧格式与 IP 是一致的,特别适合于传输 IP 数据。以太网由于具有简单方便、价格低、速度高等。以太网这个名字,起源于一个科学假设:声音是通过空气传播的,那么光呢?在外太空没有空气光也可以传播。于是,有人说光是通过一种叫以太的物质传播。后来,爱因斯坦证明以太根本就不存在。

以太网与互联网的差别:

主要差别:以太网是一种局域网,只能连接附近的设备,因特网是广域网,我们可以通过因特网连接到美国去得到消息。两者都算是用来连接电脑的网络,但是两者的范围是不同的。以太网是局限在一定的距离之内的,我们可以有成千上百个以太网;但是因特网呢,是最大的广域网了,我们只有一个因特网,所以因特网又可以说是网络中的网络。因特网是一个超大的国际化的系统,它能够把世界上的各个地方的网络连接起来,私人的,公共的,学术的还是商业的网络或者政府的网络,都可以互相连接,共享资源。形象的来说,因特网就是我们在打开网页,发送邮件,在线听音乐看电影所用的网络,它包括了非常广泛的信息,现在的我们已经习以为常了。而以太网呢,基本上就是只允许本地的几台电脑互相连接。电脑之间相互传送消息是有一组技术支持的。一般来说,连接到以太网上的电脑都在同一栋楼里,或者在周围附近。但是随着以太网网线的发展,以太网的范围可以扩展到十公里了。但是因为都是用网线互联,要想连接到很远的地方是不现实的。生活化一点,以太网就是把你家的电脑,笔记本连接到猫上,然后再通过猫连接到因特网上去,这样你才能和国外的朋友Skype。因此,你家的电脑,笔记本和猫就组成了一个以太网。可以想象,世界上有成千上万个以太网。商业上应用以太网,将他们所有的电脑连接到主服务器上。以太网可以有一个或者几个管理员。因特网上可能有一些部分是由管理员的,但是没有一个可以操控整个因特网的管理员。另外一个区别就是安全性。以太网是比较安全的,因为他是一个封闭的内部网络,外部人员是没有权限的。但是因特网是公开连接的,每个人都可以浏览。

下面主要介绍了四种不同格式的以太网帧格式。

在每种格式的以太网帧的开始处都有64比特(8字节)的前导字符,如图1所示。其中,前7个字节称为前同步码(Preamble),内容是16进制数0xAA,最后1字节为帧起始标志符0xAB,它标识着以太网帧的开始。前导字符的作用是使接收节点进行同步并做好接收数据帧的准备。

图1 以太网帧前导字符

除此之外,不同格式的以太网帧的各字段定义都不相同,彼此也不兼容。下面分别介绍下各自的帧格式。

Ethernet II

即DIX 2.0:Xerox与DEC、Intel在1982年制定的以太网标准帧格式,如图2所示。

图2 Ethernet 802.3 raw帧格式

Ethernet II类型以太网帧的最小长度为64字节(6+6+2+46+4),最大长度为1518字节(6+6+2+1500+4)。其中前12字节分别标识出发送数据帧的源节点MAC地址和接收数据帧的目标节点MAC地址。(注:ISL封装后可达1548字节,802.1Q封装后可达1522字节)。

接下来的2个字节标识出以太网帧所携带的上层数据类型,如16进制数0x0800代表IP协议数据,16进制数0x809B代表AppleTalk协议数据,16进制数0x8138代表Novell类型协议数据等。

在不定长的数据字段后是4个字节的帧校验序列(frame Check Sequence,FCS),采用32位CRC循环冗余校验对从“目标MAC地址“字段到“数据“字段的数据进行校验。

Ethernet 802.3 raw

Novell在1983年公布的专用以太网标准帧格式,如图3所示。

图3 Ethernet 802.3 raw帧格式

在Ethernet 802.3 raw类型以太网帧中,原来Ethernet II类型以太网帧中的类型字段被“总长度”字段所取代,它指明其后数据域的长度,其取值范围为:46~1500。

接下来的2个字节是固定不变的16进制数0xFFFF,它标识此帧为Novell以太类型数据帧。

Ethernet 802.3 SAP

IEEE在1985年公布的Ethernet 802.3的SAP版本以太网帧格式,如图4所示。

图4 Ethernet 802. 3 SAP帧格式

从图4中可以看出,在Ethernet 802.3 SAP帧中,将原Ethernet 802.3 raw帧中2个字节的0xFFFF变为各1个字节的DSAP和SSAP,同时增加了1个字节的“控制“字段,构成了802.2逻辑链路控制(LLC)的首部。LLC提供了无连接(LLC类型1)和面向连接(LLC类型2)的网络服务。LLC1是应用于以太网中,而LLC2应用在IBM SNA网络环境中。

新增的802.2 LLC首部包括两个服务访问点:源服务访问点(SSAP)和目标服务访问点(DSAP)。它们用于标识以太网帧所携带的上层数据类型,如16进制数0x06代表IP协议数据,16进制数0xE0代表Novell类型协议数据,16进制数0xF0代表IBM NetBIOS类型协议数据等。

至于1个字节的“控制“字段,则基本不使用(一般被设为0x03,指明采用无连接服务的802.2无编号数据格式)。

Ethernet 802.3 SNAP

IEEE在1985年公布的Ethernet 802.3的SNAP版本以太网帧格式,如图5所示。

图5 Ethernet 802. 3 SNAP帧格式

Ethernet 802. 3 SNAP类型以太网帧格式和Ethernet 802. 3 SAP类型以太网帧格式的主要区别在于:

  • 2个字节的DSAP和SSAP字段内容被固定下来,其值为16进制数0xAA。

  • 1个字节的“控制“字段内容被固定下来,其值为16进制数0x03。

  • 增加了SNAP字段,由下面两项组成:

  • 新增了3个字节的组织唯一标识符(Organizationally Unique Identifier,OUI ID)字段,其值通常等于MAC地址的前3字节,即网络适配器厂商代码。

  • 2个字节的“类型”字段用来标识以太网帧所携带的上层数据类型。

太网可以采用多种连接介质,包括同轴缆、双绞线和光纤等。其中双绞线多用于从主机到集线器或交换机的连接,而光纤则主要用于交换机间的级联和交换机到路由器间的点到点链路上。同轴缆作为早期的主要连接介质已经逐渐趋于淘汰。

注意区分双绞线中的直通线和交叉线两种连线方法.

以下连接应使用直通电缆:

交换机到路由器以太网端口

计算机到交换机

计算机到集线器

交叉电缆用于直接连接 LAN 中的下列设备:

交换机到交换机

交换机到集线器

集线器到集线器

路由器到路由器的以太网端口连接

计算机到计算机

计算机到路由器的以太网端口

CSMA/CD共享介质以太网

带冲突检测的载波侦听多路访问 (CSMA/CD)   技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网要简单。当某台电脑要发送信息时,必须遵守以下规则:

  • 开始: 如果线路空闲,则启动传输,否则转到第4步。

  • 发送: 如果检测到冲突,继续发送数据直到达到最小报文时间 (保证所有其他转发器和终端检测到冲突),再转到第4步。

  • 成功传输: 向更高层的网络协议报告发送成功,退出传输模式。

  • 线路忙: 等待,直到线路空闲 线路进入空闲状态- 等待一个随机的时间,转到第1步,除非超过最大尝试次数。

  • 超过最大尝试传输次数: 向更高层的网络协议报告发送失败,退出传输模式。

  • 就像在没有主持人的座谈会中,所有的参加者都通过一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将采用退避指数增长时间的方法(退避的时间通过截断二进制指数退避算法(truncated binary exponential backoff)来实现)。

    最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一根简单网线对于一个小型网络来说还是很可靠的,对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。

    因为所有的通信信号都在共用线路上传输,即使信息只是发给其中的一个终端(destination),某台电脑发送的消息都将被所有其他电脑接收。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。

    以太网这个名字,起源于一个科学假设:声音是通过空气传播的,那么光呢?在外太空没有空气光也可以传播。于是,有人说光是通过一种叫以太的物质传播。后来,爱因斯坦证明以太根本就不存在。

    大家知道,声音是通过空气传播的,那么光是通过什么传播的呢?

    在牛顿运动定律中,物体的运动是相对的。比如,地铁车厢里面的人看见您在车厢里原地踏步走,而位于车厢外面的人却看见你以120公里每小时的速度前进。

    但光的运动并不是这样,您无论以什么物体作为参照物,它的运动速度始终都是299 792 458 米 / 秒。这个问题困惑了很多科学家,难道牛顿定律失灵了?一个来自瑞士专利局的职员,名叫爱因斯坦的人在1905年发表了篇论文,文中提到,无论观察者以何种速度运动,相对于他们而言,光的速度是恒久不变的,相对论便由此诞生了。

    这简单的理念有一些非凡的结论。可能最著名者莫过于质量和能量的等价,用爱因斯坦的方程来表达就是E=mc^2(E是能量,m是质量,c是光速),以及没有任何东西能运动得比光还快的定律。由于能量和质量的等价,物体由于它的运动所具的能量应该加到它的质量上面去。换言之,要加速它将变得更为困难。这个效应只有当物体以接近于光速的速度运动时才有实际的意义。例如,以10%光速运动的物体的质量只比原先增加了0.5%,而以90%光速运动的物体,其质量变得比正常质量的2倍还多。当一个物体接近光速时,它的质量上升得越来越快,它需要越来越多的能量才能进一步加速上去。实际上它永远不可能达到光速,因为那时质量会变成无限大,而由质量能量等价原理,这就需要无限大的能量才能做到。

    由此我们可以看出,世界上根本就不存在以太这种物质,因为光速是永远恒定不变的,为其找个运动参照物是个笑话。有鉴于此,以太网的命名也就是一个笑话。但以太网并不会消失,它正随着人们追求高速度而不断的进行蜕变。以前,只要数据链路层遵从CSMA/CD协议通信,那么它就可以被称为以太网,但随着接入共享网络设备的增加,冲突会使网络的传输效率越来越低。后来,交换机的出现使全双工以太网得到了更好的实现。未来,以太网会披上光的外衣,飞的更快。

    网络体系结构

    ethernet采用无源的介质,按广播方式传播信息。它规定了物理层和数据链路层协议,规定了物理层和数据链路层的接口以及数据链路层与更高层的接口。

    ⑴物理层

    物理层规定了Ethernet的基本物理属性,如数据编码、时标、电频等。

    ⑵数据链路层

    数据链路层的主要功能是完成帧发送和帧接收,包括负责对用户数据进行帧的组装与分解,随时监测物理层的信息监测标志,了解信道的忙闲情况,实现数据链路的收发管理。

根据具体问题类型,进行步骤拆解/原因原理分析/内容拓展等。具体步骤如下:/导致这种情况的原因主要是……

参考资料

谢希仁.计算机网络.北京:电子工业出版社,2016

以太网是什么意思啊

以太网的意思如下:

首先以太网是计算机局域网的技术标准,是目前最广泛的局域网技术。它的传输介质可以是光纤或双绞线这些。简单的说,以太网就是一种在局域网内,把附近的设备连接起来,使它们之间可以进行通讯的技术。所以,也可以说,以太网是当今被应用的最普遍的网络技术,目前大部分网络都属于以太网范畴内。

IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。

以太网内容:

以太网有两类:第一类是经典以太网,第二类是交换式以太网,使用了一种称为交换机的设备连接不同的计算机。

经典以太网是以太网的原始形式,运行速度从3~10 Mbps不等;而交换式以太网正是广泛应用的以太网,可运行在100、1000和10000Mbps那样的高速率,分别以快速以太网、千兆以太网和万兆以太网的形式呈现。

以上内容参考 百度百科-以太网

“以太网“是什么意思

以太网(Ethernet)是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。

以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道的才能传送信息,有时也叫作以太(Ether)。

(这个名字来源于19世纪的物理学家假设的电磁辐射媒体-光以太。后来的研究证明光以太不存在。) 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。

以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100base-T、1000base-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。

如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。

扩展资料:

历史

以太网技术起源于施乐帕洛阿尔托研究中心的先锋技术项目。人们通常认为以太网发明于1973年,当年鲍勃.梅特卡夫(Bob Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。

在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:区域计算机网络的分布式数据包交换技术》的文章。

梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。

受到此结论的影响,很多计算机厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。

也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。

梅特卡夫和Saltzer曾经在麻省理工学院MAC项目(Project MAC)的同一层楼工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。

1979年,梅特卡夫为了开发个人计算机和局域网离开了施乐(Xerox),成立了3Com公司。3Com对DEC、英特尔和施乐进行游说,希望与他们一起将以太网标准化、规范化。

这个通用的以太网标准于1980年9月30日提出。当时业界有两个流行的非公用网络标准令牌环网和ARCNET,在以太网浪潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。

参考资料来源:百度百科--以太网

以太网是什么意思

以太网(Ethernet)是采用带碰撞检测的载波侦听多址访问(CDMA/CD)方法进行介质访问控制的一种局域网。

以太网主要指数据传输所经过的物理电缆,而Wi-Fi指无线连接的互联设备的网络。以太网基本上是电缆,是计算机和Internet之间的连接。这是一种有线连接,可通过USB电缆或以太网电缆直接连接计算机。而Wi-Fi更像是一种网络技术,允许移动设备无线连接到Internet。

以太网的特点

1、升级到千兆以太网不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地保护投资。

2、体现在快速以太网技术可以有效保障用户在布线基础实施上的投资,它支持3、4、5类双绞线以及光纤的连接,能有效利用现有的设施。

3、以太网是目前应用最普遍的局域网技术,取代了其他局域网技术如令牌环、FDDI和ARCNET。

“以太网”是什么意思呢

以太网以太网。指的是由Xerox公司创建并由Xerox,Intel和DEC公司联合开发的基带局域网规范。以太网络使用CSMA/CD(载波监听多路访问及冲突检测技术)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802·3系列标准相类似。 它不是一种具体的网络,是一种技术规范。 以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。 △ 以太网的连接 拓扑结构: 总线型:所需的电缆较少、价格便宜、管理成本高,不易隔离故障点、采用共享的访问机制,易造成网络拥塞。早期以太网多使用总线型的拓扑结构,采用同轴缆作为传输介质,连接简单,通常在小规模的网络中不需要专用的网络设备,但由于它存在的固有缺陷,已经逐渐被以集线器和交换机为核心的星型网络所代替。 星型:管理方便、容易扩展、需要专用的网络设备作为网络的核心节点、需要更多的网线、对核心设的可靠性要求高。采用专用的网络设备(如集线器或交换机)作为核心节点,通过双绞线将局域网中的各台主机连接到核心节点上,这就形成了星型结构。星型网络虽然需要的线缆比总线型多,但布线和连接器比总线型的要便宜。此外,星型拓扑可以通过级联的方式很方便的将网络扩展到很大的规模,因此得到了广泛的应用,被绝大部分的以太网所采用。 传输介质: 以太网可以采用多种连接介质,包括同轴缆、双绞线和光纤等。其中双绞线多用于从主机到集线器或交换机的连接,而光纤则主要用于交换机间的级联和交换机到路由器间的点到点链路上。同轴缆作为早期的主要连接介质已经逐渐趋于淘汰。 接口的工作模式: 以太网卡可以工作在两种模式下:半双工和全双工。 半双工:半双工传输模式实现以太网载波监听多路访问冲突检测。传统的共享LAN是在半双工下工作的,在同一时间只能传输单一方向的数据。当两个方向的数据同时传输时,就会产生冲突,这会降低以太网的效率。 全双工:全双工传输是采用点对点连接,这种安排没有冲突,因为它们使用双绞线中两个独立的线路,这等于没有安装新的介质就提高了带宽。例如在上例的车站间又加了一条并行的铁轨,同时可有两列火车双向通行。在双全工模式下,冲突检测电路不可用,因此每个双全工连接只用一个端口,用于点对点连接。标准以太网的传输效率可达到50%~60%的带宽,双全工在两个方向上都提供100%的效率。 △ 以太网的工作原理 以太网采用带冲突检测的载波帧听多路访问(CSMA/CD)机制。以太网中节点都可以看到在网络中发送的所有信息,因此,我们说以太网是一种广播网络。以太网的工作过程如下: 当以太网中的一台主机要传输数据时,它将按如下步骤进行: 1、帧听信道上收否有信号在传输。如果有的话,表明信道处于忙状态,就继续帧听,直到信道空闲为止。 2、若没有帧听到任何信号,就传输数据 3、传输的时候继续帧听,如发现冲突则执行退避算法,随机等待一段时间后,重新执行步骤1(当冲突发生时,涉及冲突的计算机会发送一个拥塞序列,以警告所有的节点) 4、若未发现冲突则发送成功,计算机会返回到帧听信道状态。 注意:每台计算机一次只允许发送一个包,所有计算机在试图再一次发送数据之前,必须在最近一次发送后等待9.6微秒(以10Mbps运行)。 △ 帧结构 以太网帧的概述: 以太网的帧是数据链路层的封装,网络层的数据包被加上帧头和帧尾成为可以被数据链路层识别的数据帧(成帧)。虽然帧头和帧尾所用的字节数是固定不变的,但依被封装的数据包大小的不同,以太网的长度也在变化,其范围是64~1518字节(不算8字节的前导字)。 △ 冲突/冲突域 冲突(Collision):在以太网中,当两个数据帧同时被发到物理传输介质上,并完全或部分重叠时,就发生了数据冲突。当冲突发生时,物理网段上的数据都不再有效。 冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。 影响冲突产生的因素:冲突是影响以太网性能的重要因素,由于冲突的存在使得传统的以太网在负载超过40%时,效率将明显下降。产生冲突的原因有很多,如同一冲突域中节点的数量越多,产生冲突的可能性就越大。此外,诸如数据分组的长度(以太网的最大帧长度为1518字节)、网络的直径等因素也会影响冲突的产生。因此,当以太网的规模增大时,就必须采取措施来控制冲突的扩散。通常的办法是使用网桥和交换机将网络分段,将一个大的冲突域划分为若干小冲突域。 △ 广播/广播域 广播:在网络传输中,向所有连通的节点发送消息称为广播。 广播域:网络中能接收任何一设备发出的广播帧的所有设备的集合。 广播和广播域的区别:广播网络指网络中所有的节点都可以收到传输的数据帧,不管该帧是否是发给这些节点。非目的节点的主机虽然收到该数据帧但不做处理。 广播是指由广播帧构成的数据流量,这些广播帧以广播地址(地址的每一位都为“1”)为目的地址,告之网络中所有的计算机接收此帧并处理它。 △ 共享式以太网 共享式以太网的典型代表是使用10base2/10base5的总线型网络和以集线器(集线 器)为核心的星型网络。在使用集线器的以太网中,集线器将很多以太网设备集中到一台中心设备上,这些设备都连接到集线器中的同一物理总线结构中。从本质上讲,以集线器为核心的以太网同原先的总线型以太网无根本区别。 集线器的工作原理: 集线器并不处理或检查其上的通信量,仅通过将一个端口接收的信号重复分发给其他端口来扩展物理介质。所有连接到集线器的设备共享同一介质,其结果是它们也共享同一冲突域、广播和带宽。因此集线器和它所连接的设备组成了一个单一的冲突域。如果一个节点发出一个广播信息,集线器会将这个广播传播给所有同它相连 的节点,因此它也是一个单一的广播域。 集线器的工作特点: 集线器多用于小规模的以太网,由于集线器一般使用外接电源(有源),对其接收的信号有放大处理。在某些场合,集线器也被称为“多端口中继器”。 集线器同中继器一样都是工作在物理层的网络设备。 共享式以太网存在的弊端:由于所有的节点都接在同一冲突域中,不管一个帧从哪里来或到哪里去,所有的节点都能接受到这个帧。随着节点的增加,大量的冲突将导致网络性能急剧下降。而且集线器同时只能传输一个数据帧,这意味着集线器所 有端口都要共享同一带宽。 △ 交换式以太网 交换式结构: 在交换式以太网中,交换机根据收到的数据帧中的MAC地址决定数据帧应发向交换机的哪个端口。因为端口间的帧传输彼此屏蔽,因此节点就不担心自己发送的帧在通过交换机时是否会与其他节点发送的帧产生冲突。 为什么要用交换式网络替代共享式网络: ·减少冲突:交换机将冲突隔绝在每一个端口(每个端口都是一个冲突域),避免了冲突的扩散。 ·提升带宽:接入

以太网是什么啊

以太网(Ethernet)是一种计算机局域网技术,是目前应用最普遍的局域网技术,取代了其他局域网标准。

以太网实现了在网络上向无线系统中的多个节点发送信息的思想。每个节点必须获取电缆或通道来传输信息,包括物理层的连线、电子信号和介质访问层协议的内容。

以太网可以通过当前的快速以太网将最大限度地提高网络速度和效率,以减少冲突,使用集线器进行网络连接和组织。

扩展资料

以太网的网络接口类型

SC光纤接口类型。SC光纤接口已在以太网时代得到应用,接口种类繁多,主要用于局域网交换环境,它在一些高性能以太网交换机和路由器上提供。

FDDI接口类型。FDDI是以太网局域网中技术中传输速率最高的一种,它具有定时令牌协议的特点,支持多种拓扑结构,传输介质为光纤。

RJ-45接口类型。这个接口是最常见的网络设备接口,俗称“水晶头”,属于双绞线以太网接口类型,传输介质均为双绞线对。

参考资料来源:百度百科-以太网

以太网是什么

以太网是一种计算机局域网技术。

以太网的基本特征是采用一种称为载波监听多路访问/冲突检测CSMA/CD的共享访问方案,即多个工作站都连接在一条总线上,所有的工作站都不断向总线上发出监听信号;

但是以太网在同一时刻只能有一个工作站在总线上进行传输,而其它工作站必须等待其传输结束后再开始自己的传输。

扩展资料:

以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。

以太网可以在互联设备之间以10-100Mbps的速率传送信息包。以太网可能工作在两种模式下,半双工和全双工。

参考资料来源:百度百科-以太网

 
关键词: 以太网
 
 
相关推荐
热门点击
 
网站首页 | 网站地图 | 广告服务 | 网站留言 | RSS订阅